Abstract
Established tumour cell lines are ubiquitous tools in research, but their representativity is often debated. One possible caveat is that many cell lines are derived from cells with genomic instability, potentially leading to genotype changes in vitro. We applied SNP-array analysis to an established tumour cell line (WiT49). Even though WiT49 exhibited chromosome segregation errors in 30% of cell divisions, only a single chromosome segment exhibited a shift in copy number after 20 population doublings in culture. In contrast, sub-populations derived from single cells expanded for an equal number of population doublings showed on average 5.8 and 8.9 altered segments compared to the original culture and to each other, respectively. Most copy number variants differentiating these single cell clones corresponded to pre-existing variations in the original culture. Furthermore, no sub-clonal variation was detected in any of the populations derived from single cells. This indicates that genetic bottlenecks resulting from population reduction poses a higher threat to genetic representativity than prolonged culture per se, even in cell lines with a high rate of genomic instability. Genetic bottlenecks should therefore be considered a potential caveat in all studies involving sub-cloning, transfection and other conditions leading to a temporary reduction in cell number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.