Abstract

BackgroundPrevious studies of radiological damage in rheumatoid arthritis (RA) have used candidate-gene approaches, or evaluated single genome-wide association studies (GWAS). We undertook the first meta-analysis of GWAS of RA radiological damage to: (1) identify novel genetic loci for this trait; and (2) test previously validated variants.MethodsSeven GWAS (2,775 RA cases, of a range of ancestries) were combined in a meta-analysis. Radiological damage was assessed using modified Larsen scores, Sharp van Der Heijde scores, and erosive status. Single nucleotide polymophsim (SNP) associations with radiological damage were tested at a single time-point using regression models. Primary analyses included age and disease duration as covariates. Secondary analyses also included rheumatoid factor (RF). Meta-analyses were undertaken in trans-ethnic and European-only cases.ResultsIn the trans-ethnic primary meta-analysis, one SNP (rs112112734) in close proximity to HLA-DRB1, and strong linkage disequilibrium with the shared-epitope, attained genome-wide significance (P = 4.2x10-8). In the secondary analysis (adjusting for RF) the association was less significant (P = 1.7x10-6). In both trans-ethnic primary and secondary meta-analyses 14 regions contained SNPs with associations reaching P<5x10-6; in the European primary and secondary analyses 13 and 10 regions contained SNPs reaching P<5x10-6, respectively. Of the previously validated SNPs for radiological progression, only rs660895 (tagging HLA-DRB1*04:01) attained significance (P = 1.6x10-5) and had a consistent direction of effect across GWAS.ConclusionsOur meta-analysis confirms the known association between the HLA-DRB1 shared epitope and RA radiological damage. The lack of replication of previously validated non-HLA markers highlights a requirement for further research to deliver clinically-useful prognostic genetic markers.

Highlights

  • Previous studies of radiological damage in rheumatoid arthritis (RA) have used candidategene approaches, or evaluated single genome-wide association studies (GWAS)

  • Identifying patients likely to develop severe phenotypes could allow early intensive therapy to be focussed on poor prognosis cases

  • Radiological damage is one measure of RA severity. It is moderately heritable suggesting genetic markers could represent useful prognostic biomarkers [1]

Read more

Summary

Objectives

We have carried out the largest GWAS of RA radiological damage, by peforming and combining seven independent GWAS. We aimed to identify novel genetic loci for radiological damage

Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.