Abstract

ABSTRACT The genetic basis for root vascular traits in rice, despite its direct impacts on root axial and radial hydraulic conductivity, has not been widely studied compared with deep rooting traits. We used five phenotyping datasets (i.e. from maturity stage grown in upland field in 2013, and from vegetative and maturity stages grown in upland and lowland fields in 2019) to quantify the genotypic variations and genomic regions of root vascular traits in a temperate japonica mapping population (from lowland Otomemochi (OTM) and upland Yumenohatamochi (YHM)). YHM had larger stele transversal area (STA) and total late metaxylem area (LMXA), as well as higher deep root ratio and total root length at deeper layers (>30 cm) than OTM. Root vascular traits were significantly different among progenies in each dataset, and the size of genotype-by-environment interactions was comparable. Root vascular traits were not positively correlated with deep rooting traits. From the multi-environment analysis of all five datasets, four key genomic regions related to STA in both joint and separate analyses were detected on chromosome 2 (RM3703-RM6379, RM6933-RM3857), chromosome 4 (RM1388-RM5503) and chromosome 12 (RM247-RM155), with the first and third collocated with deep rooting traits. QTL-by-environment interaction was comparable to the main additive effect. This study is the first report on genomic regions of root vascular traits in a japonica mapping population.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call