Abstract

A novel zebra mutant, zebra-15, derived from the restorer line Jinhui10 (Oryza sativa L. ssp. indica) treated by EMS, displayed a distinctive zebra leaf from seedling stage to jointing stage. Its chlorophyll content decreased (55.4%) and the ratio of Chla/Chlb increased (90.2%) significantly in the yellow part of the zebra-15, compared with the wild type. Net photosynthetic rate and fluorescence kinetic parameters showed that the decrease of chlorophyll content significantly influenced the photosynthetic efficiency of the mutant. Genetic analysis of F(2) segregation populations derived from the cross of Xinong1A and zebra-15 indicated that the zebra leaf trait is controlled by a single recessive nuclear gene. Ninety-eight out of four hundred and eighty pairs of SSR markers showed the diversity between the Xinong1A and the zebra-15, their F(2) population was then used for gene mapping. Zebra-15 (Z-15) gene was primarily restricted on the short arm of chromosome 5 by 150 F(2) recessive individuals, 19.6 cM from marker RM3322 and 6.0 cM from marker RM6082. Thirty-six SSR markers were newly designed in the restricted location, and the Z-15 was finally located between markers nSSR516 and nSSR502 with the physical region 258 kb by using 1,054 F(2) recessive individuals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.