Abstract

Nicotine is widely recognized as the primary contributor to tobacco dependence. Previous studies have indicated that molecular and behavioral responses to nicotine are primarily mediated by ventral tegmental area (VTA) neurons, and accumulating evidence suggests that glia play prominent roles in nicotine addiction. However, VTA neurons and glia have yet to be characterized at the transcriptional level during the progression of nicotine self-administration. Here, a male mouse model of nicotine self-administration was established and the timing of three critical phases (pre-addiction, addicting, and post-addiction phase) was characterized. Single-nucleus RNA sequencing (snRNA-seq) in the VTA at each phase was performed to comprehensively classify specific cell subtypes. Adaptive changes occurred during the addicting and post-addiction phases, with the addicting phase displaying highly dynamic neuroplasticity that profoundly impacted the transcription in each cell subtype. Furthermore, significant transcriptional changes in energy metabolism-related genes were observed, accompanied by notable structural alterations in neuronal mitochondria during the progression of nicotine self-administration. The results provide insights into mechanisms underlying the progression of nicotine addiction, serving as important resource for identifying potential molecular targets for nicotine cessation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.