Abstract

Soybean is an important economic and green manure crop that is widely used in intercropping and rotation systems due to its high biological nitrogen fixation (BNF) capacity and the resulting reduction in N fertilization. However, the genetic mechanisms underlying soybean BNF are largely unknown. Here, two soybean parent genotypes contrasting in BNF traits and 168 F9:11 recombinant inbred lines (RILs) were evaluated under four conditions in the field. The parent FC1 always produced more big nodules, yet fewer nodules in total than the parent FC2 in the field. Furthermore, nodulation in FC1 was more responsive to environmental changes than that in FC2. Broad-sense heritability (h2b) for all BNF traits varied from 0.48 to 0.87, which suggests that variation in the observed BNF traits was primarily determined by genotype. Moreover, two new QTLs for BNF traits, qBNF-16 and qBNF-17, were identified in this study. The qBNF-16 locus was detected under all of the four tested conditions, where it explained 15.9–59.0% of phenotypic variation with LOD values of 6.31–32.5. Meanwhile qBNF-17 explained 12.6–18.6% of observed variation with LOD values of 4.93–7.51. Genotype group analysis indicated that the FC1 genotype of qBNF-16 primarily affected nodule size (NS), while the FC2 genotype of qBNF-16 promoted nodule number (NN). On the other hand, the FC1 genotype of qBNF-17 influenced NN and the FC2 genotype of qBNF-17 impacted NS. The results on the whole suggest that these two QTLs might be valuable markers for breeding elite soybean varieties with high BNF capacities.

Highlights

  • As an important economic crop, soybean is a main source of edible oil and protein for human around the world due to the high oil (20–25%) and high protein (42–45%) contents in the seeds (Aziz et al, 2016)

  • Compared with FC2, FC1 had a shallower root architecture denoted by more roots in the top soil, and more big nodules than FC2 in the field (Figures 1A–C)

  • By 2050, agricultural production might need to be increased by 70% in order to satisfy the needs of a growing population (Joseph et al, 2016)

Read more

Summary

Introduction

As an important economic crop, soybean is a main source of edible oil and protein for human around the world due to the high oil (20–25%) and high protein (42–45%) contents in the seeds (Aziz et al, 2016). The high capacity of biological nitrogen fixation (BNF) found in leguminous crops, including soybean, makes this a key source of green manure in agro-ecosystems (Kumudini et al, 2008; Chen and Liao, 2017; Yang et al, 2017). BNF is a process in which plant unavailable atmospheric N2 is converted into readily available ammonia (NH3) in nodules formed through symbiotic associations between plants and microbes (Fox et al, 2016; Yang et al, 2017)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.