Abstract

This contribution deals with the Molecular Effect Model (MEM) Genetic Algorithms polynomial-dual optimization for High Temperature Superconductors (HTSCs) class of [ Sn-Sb-Te-Ba-Mn-Cu-O ] . Results comprise Tikhonov Regularization Functionals development and mathematical methods for this HTSCs group without using logarithmic changes. Findings for this MEM optimization, based on Genetic Algorithms polynomial-dual-method show acceptable theoretical Numerical and 2D/3D Graphical Optimization solutions and low residuals. Solutions comprise two parts, the modelling for TC Molecular Effect predictions equations, and 2D graphics series of results. Electronics Physics applications for Superconductors and High Temperature Superconductors are specified for Isotope Effect in BCS theory and for MEM and presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.