Abstract
In this paper, we apply a genetic algorithm to flowshop scheduling problems and examine two hybridizations of the genetic algorithm with other search algorithms. First we examine various genetic operators to design a genetic algorithm for the flowshop scheduling problem with an objective of minimizing the makespan. By computer simulations, we show that the two-point crossover and the shift change mutation are effective for this problem. Next we compare the genetic algorithm with other search algorithms such as local search, taboo search and simulated annealing. Computer simulations show that the genetic algorithm is a bit inferior to the others. In order to improve the performance of the genetic algorithm, we examine the hybridization of the genetic algorithms. We show two hybrid genetic algorithms: genetic local search and genetic simulated annealing. Their high performance is demonstrated by computer simulations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have