Abstract
The near infrared (NIR) spectrum contains a global signature of composition, and enables to predict different proper ties of the material. In the present paper, a genetic algorithm and an adaptive modeling technique were applied to build a multiobjective least square support vector machine (MLS-SVM), which was intended to simultaneously determine the concentrations of multiple components by NIR spectroscopy. Both the benchmark corn dataset and self-made Forsythia suspense dataset were used to test the proposed approach. Results show that a genetic algorithm combined with adaptive modeling allows to efficiently search the LS-SVM hyperparameter space. For the corn data, the performance of multi-objective LS-SVM was significantly better than models built with PLS1 and PLS2 algorithms. As for the Forsythia suspense data, the performance of multi-objective LS-SVM was equivalent to PLS1 and PLS2 models. In both datasets, the over-fitting phenomena were observed on RBFNN models. The single objective LS-SVM and MLS-SVM didn't show much difference, but the one-time modeling convenience al lows the potential application of MLS-SVM to multicomponent NIR analysis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.