Abstract
A multi-layer, feed-forward, back-propagation learning algorithm was used as an artificial neural network (ANN) tool to predict the extraction of germanium from zinc plant residues by sulphuric acid leaching. A genetic algorithm (GA) was used for the selection of training and testing data and a GA-ANN model of the germanium leaching system was created on the basis of the training data. Testing of the model yielded good error levels (r2 = 0.95). The model was employed to predict the response of the system to different values of the factors that affect the recovery of germanium and the results facilitate selection of the experimental conditions in which the optimum recovery will be achieved.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have