Abstract
Cervical and vulvar cancers are diseases of the female lower genital tract, and high-risk human papillomavirus (HPV) infection is the most important risk factor for the development of both cancers. However, it is clear that additional genetic events are necessary for tumor progression, particularly in HPV-negative cases. We detected the presence of high-risk HPV16 and HPV18 genomes by gene-specific polymerase chain reaction and searched for common genetic imbalances by comparative genomic hybridization (CGH) in 28 cervical and 8 vulvar tumor samples and 7 cancer cell lines. The presence of the HPV genome was detected in 25/28 (89%) cervical tumors and 6/8 (75%) vulvar tumors. CGH of cervical and vulvar tumor samples revealed a consistent pattern of genetic changes in both cancers. Frequent gains were found in 1q, 3q, 5p, and 8q, and less consistent losses were detected in 2q, 3p, 4p, and 11p. Notably, a high-level amplification of 3q was found in 9/28 (32%) cervical tumors and 1/8 (12.5%) vulvar tumors, indicating a pivotal role of gain of 3q in cervical and vulvar carcinogenesis. Furthermore, gains of 5p identified in 9/28 (32%) cervical tumors and 3/8 (37.5%) vulvar tumors were seldom described, particularly in vulvar tumors. Our findings suggest that cervical and vulvar carcinomas bear similar chromosomal alteration hot spots that largely coincide with common genomic lesions during tumor progression, besides the initiation by infection and integration of oncogenic HPV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.