Abstract
The pattern of neurogenesis of GABA-immunoreactive neurons in the ferret primary visual cortex was determined using immunohistochemical and 3H-thymidine autoradiographic techniques. Neurons in the visual cortex of the ferret undergo their final cell division during a period extending from embryonic day 20 (E20) to postnatal day 14 (P14) and follow an inside-out pattern of neuronal production (Jackson et al., 1984) similar to that observed in other mammals. Earlier-generated neurons are found at deeper cortical positions in the adult than are those generated later. Layer I is an exception to this rule, since neurons destined for this layer are produced at both the beginning and end of neurogenesis. In this study, the pattern of neurogenesis of GABA-immunoreactive neurons is compared to the pattern observed for nonimmunoreactive neurons. The overall pattern of cortical neurogenesis (inside-out pattern) is similar for GABA-immunoreactive neurons and neurons that are not GABA-immunoreactive. However, the GABA-immunoreactive neurons born on a given day of development are more broadly distributed across the radial axis of the adult cortex than are nonimmunoreactive neurons generated on the same day. GABA-immunoreactive neurons generated later in neurogenesis are, on average, slightly smaller than those generated early. If GABA-immunoreactive neurons in the visual cortex are interneurons, then these findings suggest that interneurons follow the same pattern of neurogenesis as do projecting neurons in the visual cortex.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have