Abstract

The cyanobacterium Synechocystis sp. strain PCC 6803 possesses two CO(2) uptake systems and two HCO(3)(-) transporters. We transformed a mutant impaired in CO(2) uptake and in cmpA-D encoding a HCO(3)(-)transporter with a transposon inactivation library, and we recovered mutants unable to take up HCO(3)(-) and grow in low CO(2) at pH 9.0. They are all tagged within slr1512 (designated sbtA). We show that SbtA-mediated transport is induced by low CO(2), requires Na(+), and plays the major role in HCO(3)(-) uptake in Synechocystis. Inactivation of slr1509 (homologous to ntpJ encoding a Na(+)/K(+)-translocating protein) abolished the ability of cells to grow at [Na(+)] higher than 100 mm and severely depressed the activity of the SbtA-mediated HCO(3)(-) transport. We propose that the SbtA-mediated HCO(3)(-) transport is driven by DeltamuNa(+) across the plasma membrane, which is disrupted by inactivating ntpJ. Phylogenetic analyses indicated that two types of sbtA exist in various cyanobacterial strains, all of which possess ntpJ. The sbtA gene is the first one identified as essential to Na(+)-dependent HCO(3)(-) transport in photosynthetic organisms and may play a crucial role in carbon acquisition when CO(2) supply is limited, or in Prochlorococcus strains that do not possess CO(2) uptake systems or Cmp-dependent HCO(3)(-) transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.