Abstract
A field extension L / F is called excellent if, for any quadratic form φ over F, the anisotropic part (φL)an of φ over L is defined over F; L / F is called universally excellent if L ⋅ E / E is excellent for any field extension E / F. We study the excellence property for a generic splitting field of a central simple F-algebra. In particular, we show that it is universally excellent if and only if the Schur index of the algebra is not divisible by 4. We begin by studying the torsion in the second Chow group of products of Severi–Brauer varieties and its relationship with the relative Galois cohomology group H3(L / F) for a generic (common) splitting field L of the corresponding central simple F-algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.