Abstract
We introduce a novel framework for studying small-scale primordial perturbations and their cosmological implications. The framework uses a deep reinforcement learning to generate scalar power spectrum profiles that are consistent with current observational constraints. The framework is shown to predict the abundance of primordial black holes and the production of secondary induced gravitational waves. We demonstrate that the set up under consideration is capable of generating predictions that are beyond the traditional model-based approaches.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have