Abstract
Abstract This paper deals with the optimal and safe operation of jacketed tubular reactors. Despite the existence of advanced distributed controllers, optimal steady-state reference profiles to be tracked are often unknown. In Logist et al. [2008], a procedure which combines analytical and numerical optimal control techniques, has been proposed for deriving optimal analytical (and thus generic) references, and it has been illustrated for plug flow reactors. The aim of this paper is to illustrate the general applicability of this procedure by allowing dispersion. As dispersion significantly complicates a possible solution process (due to second-order derivatives and split boundary conditions), hardly any generic results are known. Nevertheless, the dispersive plug flow reactor model is important for practice, since varying the dispersion level allows to mimic an entire reactor range, i.e., from plug flow to perfectly mixed reactors. As an example a jacketed tubular reactor in which an exothermic irreversible first-order reaction takes place is adopted. It is shown that the procedure yields generic reference solutions for ( i ) three different cost criteria, and ( ii ) different dispersion levels.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have