Abstract

We present a generic inference method for inflation models from observational data by the usage of higher-order statistics of the curvature perturbation on uniform density hypersurfaces. This method is based on the calculation of the posterior for the primordial non-Gaussianity parameters fNL and gNL, which in general depend on specific parameters of inflation and reheating models, and enables to discriminate among the still viable inflation models. To keep analyticity as far as possible to dispense with numerically expensive sampling techniques a saddle-point approximation is introduced, whose precision is validated for a numerical toy example. The mathematical formulation is done in a generic way so that the approach remains applicable to cosmic microwave background data as well as to large scale structure data. Additionally, we review a few currently interesting inflation models and present numerical toy examples thereof in two and three dimensions to demonstrate the efficiency of the higher-order statistics method. A second quantity of interest is the primordial power spectrum. Here, we present two Bayesian methods to infer it from observational data, the so called critical filter and an extension thereof with smoothness prior, both allowing for a non-parametric spectrum reconstruction. These methods are able to reconstruct the spectra of the observed perturbations and the primordial ones of curvature perturbation even in case of non-Gaussianity and partial sky coverage. We argue that observables like T- and B-modes permit to measure both spectra. This also allows to infer the level of non-Gaussianity generated since inflation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.