Abstract
We give a finite presentation by generators and relations for the group O_n(Z[1/2]) of n-dimensional orthogonal matrices with entries in Z[1/2]. We then obtain a similar presentation for the group of n-dimensional orthogonal matrices of the form M/sqrt(2)^k, where k is a nonnegative integer and M is an integer matrix. Both groups arise in the study of quantum circuits. In particular, when the dimension is a power of 2, the elements of the latter group are precisely the unitary matrices that can be represented by a quantum circuit over the universal gate set consisting of the Toffoli gate, the Hadamard gate, and the computational ancilla.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have