Abstract
We introduce a new model for non-linear endmember extraction and spectral unmixing of hyperspectral imagery called Generative Simplex Mapping (GSM). The model represents endmember mixing using a latent space of points sampled within a (n−1)-simplex corresponding to n unique sources. Barycentric coordinates within this simplex are naturally interpreted as relative endmember abundances satisfying both the abundance sum-to-one and abundance non-negativity constraints. Points in this latent space are mapped to reflectance spectra via a flexible function combining linear and non-linear mixing. Due to the probabilistic formulation of the GSM, spectral variability is also estimated by a precision parameter describing the distribution of observed spectra. Model parameters are determined using a generalized expectation-maximization algorithm, which guarantees non-negativity for extracted endmembers. We first compare the GSM against three varieties of non-negative matrix factorization (NMF) on a synthetic data set of linearly mixed spectra from the USGS spectral database. Here, the GSM performed favorably for both endmember accuracy and abundance estimation with all non-linear contributions driven to zero by the fitting procedure. In a second experiment, we apply the GTM to model non-linear mixing in real hyperspectral imagery captured over a pond in North Texas. The model accurately identified spectral signatures corresponding to near-shore algae, water, and rhodamine tracer dye introduced into the pond to simulate water contamination by a localized source. Abundance maps generated using the GSM accurately track the evolution of the dye plume as it mixes into the surrounding water.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have