Abstract
Segmentation of histology tissue whole side images is an important step for tissue analysis. Given enough annotated training data, modern neural networks are capable of accurate reproducible segmentation; however, the annotation of training datasets is time consuming. Techniques such as human-in-the-loop annotation attempt to reduce this annotation burden, but still require vast initial annotation. Semi-supervised learning-a technique which leverages both labeled and unlabeled data to learn features-has shown promise for easing the burden of annotation. Towards this goal, we employ a recently published semi-supervised method, datasetGAN, for the segmentation of glomeruli from renal biopsy images. We compare the performance of models trained using datasetGAN and traditional annotation and show that datasetGAN significantly reduces the amount of annotation required to develop a highly performing segmentation model. We also explore the usefulness of datasetGAN for transfer learning and find that this method greatly enhances the performance when a limited number of whole slide images are used for training.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have