Abstract

Over the past decade, research in the field of Deep Learning has brought about novel improvements in image generation and feature learning; one such example being a Generative Adversarial Network. However, these improvements have been coupled with an increasing demand on mathematical literacy and previous knowledge in the field. Therefore, in this literature review, I seek to introduce Generative Adversarial Networks (GANs) to a broader audience by explaining their background and intuition at a more foundational level. I begin by discussing the mathematical background of this architecture, specifically topics in linear algebra and probability theory. I then proceed to introduce GANs in a more theoretical framework, along with some of the literature on GANs, including their architectural improvements and image-generation capabilities. Finally, I cover state-of-the-art image generation through style-based methods, as well as their implications on society.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.