Abstract

A generative adversarial network (GAN) is an artifcial neural network with a distinctive training architecture, designed to create examples that faithfully reproduce a target distribution. GANs have recently had particular success in applications involving high-dimensional distributions in areas such as image processing. Little work has been reported for low dimensions, where properties of GANs may be better identifed and understood. We studied GAN performance in simulated low-dimensional settings, allowing us to transparently assess effects of target distribution complexity and training data sample size on GAN performance in a simple experiment. This experiment revealed two important forms of GAN error, tail underflling and bridge bias, where the latter is analogous to the tunneling observed in high-dimensional GANs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.