Abstract
ABSTRACT Efficient and accurate classification of brain tumor categories remains a critical challenge in medical imaging. While existing techniques have made strides, their reliance on generic features often leads to suboptimal results. To overcome these issues, Multimodal Contrastive Domain Sharing Generative Adversarial Network for Improved Brain Tumor Classification Based on Efficient Invariant Feature Centric Growth Analysis (MCDS-GNN-IBTC-CGA) is proposed in this manuscript.Here, the input imagesare amassed from brain tumor dataset. Then the input images are preprocesssed using Range – Doppler Matched Filter (RDMF) for improving the quality of the image. Then Ternary Pattern and Discrete Wavelet Transforms (TPDWT) is employed for feature extraction and focusing on white, gray mass, edge correlation, and depth features. The proposed method leverages Multimodal Contrastive Domain Sharing Generative Adversarial Network (MCDS-GNN) to categorize brain tumor images into Glioma, Meningioma, and Pituitary tumors. Finally, Coati Optimization Algorithm (COA) optimizes MCDS-GNN’s weight parameters. The proposed MCDS-GNN-IBTC-CGA is empirically evaluated utilizing accuracy, specificity, sensitivity, Precision, F1-score,Mean Square Error (MSE). Here, MCDS-GNN-IBTC-CGA attains 12.75%, 11.39%, 13.35%, 11.42% and 12.98% greater accuracy comparing to the existingstate-of-the-arts techniques, likeMRI brain tumor categorization utilizing parallel deep convolutional neural networks (PDCNN-BTC), attention-guided convolutional neural network for the categorization of braintumor (AGCNN-BTC), intelligent driven deep residual learning method for the categorization of braintumor (DCRN-BTC),fully convolutional neural networks method for the classification of braintumor (FCNN-BTC), Convolutional Neural Network and Multi-Layer Perceptron based brain tumor classification (CNN-MLP-BTC) respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.