Abstract

Airy beam is a kind of wavepacket existing in the form of photons, electrons, and plasmonics. Well known as diffraction-free beam, optical Airy beam tends to accelerate in transverse space with a parabolic trajectory, and exhibits self-healing property when partially blocked. Those properties have attracted a great deal of research interests and applications. Circular Airy beam, exhibiting cylindrically symmetric intensity pattern and abruptly autofocusing characteristics in the linear media, is a variant of Airy-like wave. Optical vortex, on the other hand, is a kind of phase singularity. We present to shape the autofocusing Airy beam with a vortex phase structure, which was realized through the binary amplitude modulation with a digital micromirror device (DMD). Each mirror on the DMD could be electronically addressed to situate at either of the two solid positional states corresponding to on and off. Shaping the light into a specific mode requires the calculation of the amplitude pattern for display on the DMD. By reshaping individual DMD pixels into giant pixels, the complex field of the vortex Airy beam could be encoded with a super-pixel method. The propagation property of the vortex Airy beam was investigated through numerical simulation for different topological charges. Furthermore, the propagation characteristics of this beam in free space were verified and discussed through the experiments. We anticipate that the proposed vortex Airy beam in particle trapping, biological field and optical communications. This method with DMD can also be used to generate other beams with different characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call