Abstract

This study investigates how qubits of modern quantum annealers (QA) such as D-Wave can be applied for generating truly random numbers. We show how a QA can be initialised and how the annealing schedule can be set so that after the annealing, thousands of truly random binary numbers are measured in parallel. Those can then be converted to uniformly distributed natural or real numbers in desired ranges, either biased or unbiased. We discuss the observed qubits’ properties and their influence on the random number generation and consider various physical factors that influence the performance of our generator, i.e., digital-to-analogue quantisation errors, flux errors, temperature errors and spin bath polarisation. The numbers generated by the proposed algorithm successfully pass various tests on randomness from the NIST test suite. Our source code and large sets of truly random numbers are publicly available on our project web page <monospace xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><uri>https://4dqv.mpi-inf.mpg.de/QRNG/</uri></monospace> .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.