Abstract

High-pulse-energy supercontinuum radiation with a width exceeding 900 nm in the near-infrared spectral region has been generated in conventional single-mode fibre. The fibre was pumped at 1064 nm which is in the normal dispersion regime, resulting in predominantly red-shifted spectral broadening. Supercontinuum pulse energies exceeding 450 nJ were obtained. The use of conventional fibre allows for inexpensive generation of near-infrared supercontinuum radiation, featuring high pulse energies and good spatial beam quality. This supercontinuum radiation was used to acquire high-resolution (15 pm) broadband absorption spectra of H2O, C2H2 and C2H4 in the near-infrared spectral region (1340–1700 nm), using an optical spectrum analyser for detection. H2O spectra were also recorded at high repetition rates, by dispersing the supercontinuum pulses and detecting the transmitted signal in the time domain. A spectral resolution of 38 pm was obtained employing the dispersed supercontinuum pulses, which is comparable to the H2O line widths at ambient conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call