Abstract

In this study we report the preparation of RuO2/Fe3O4@nSiO2@mSiO2 core–shell powder mesoporous catalyst for heterogeneous oxidation of phenol by peroxymonosulfate (PMS) as oxidant. The properties of this supported catalyst were characterized by SEM–EDS (scanning electron microscopy–energy dispersive X-ray spectroscopy), XRD (powder X-ray diffraction), TEM (transmission electron microscopy), and nitrogen adsorption–desorption. It is found that using ruthenium oxide-based catalyst is highly effective in activating PMS for related sulfate radicals. The effects of catalyst loading, phenol concentration, PMS concentration, reaction temperature, and reusability of the as-prepared catalyst on phenol degradation were investigated. In RuO2/Fe3O4@nSiO2@mSiO2 mesoporous catalyst, Oxone (PMS) was effectively activated and 100 % phenol degradation occurred in 40 min. The magnetic RuO2/Fe3O4@nSiO2@mSiO2 catalyst was facility separated from the solution by an external magnetic field. To regenerate the deactivated catalyst and improve its catalytic properties, three different methods involving annealing in air, washing with water, and applying ultrasonics were used. The catalyst was recovered thoroughly by heat treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call