Abstract

This contribution reports particle-in-cell numerical studies of deuteron beam acceleration by a picosecond laser pulse of circular polarization. The effect of laser wavelength λ and the I(L)λ(2) product (I(L) is laser intensity) on the ion beam parameters is investigated. It is shown that at the I(L)λ(2) product fixed, the beam parameters (<E(i)>, I(i), F(i)) as well as the laser-ions energy conversion efficiency quickly increase with a decrease in the laser wavelength and the best results are achieved for a KrF laser (λ = 0.248 μm). In particular, a 2-ps KrF laser pulse of I(L)λ(2) ∼ 2 × 10(20) Wcm(-2) μm(2) interacting with a 10-μm deuteron target produces a quasi-monoenergetic, solid-density deuteron beam of parameters approaching those required for inertial confinement fusion fast ignition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call