Abstract

We demonstrate that femtosecond laser ablation of silicon targets in vacuum is a viable route to the generation and deposition of nanoparticles with radii of ≈5–10 nm. The nanoparticles dynamics during expansion has been analyzed through their structureless continuum optical emission, while atoms and ions, also present in the plume, have been identified by their characteristic emission lines. Atomic force microscopy analysis of the material deposited at room temperature has allowed the characterization of the nanoparticles size distribution. Taking into account the emissivity of small particles we show that the continuum emission is a blackbody-like radiation from the nanoparticles. Our results suggest that nanoclusters are generated as a result of relaxation processes of the extreme material state reached by the irradiated target surface, in agreement with recently published theoretical studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call