Abstract
Glutathione peroxidase (GPX) is one of the important members of the antioxidant enzyme family. It can catalyze the reduction of hydroperoxides with glutathione to protect cells against oxidative damage. Single-chain variable fragment (scFv) can be converted into seleniumcontaining single-chain variable fragment (Se-scFv) by chemical modification of the hydroxyl groups in scFv, thus Se-scFv possesses GPX activity and becomes a prodrug. To improve the expression of scFv and simplify its purification steps, Single-protein production (SPP) system was used to express scFv and chemical modification was used to synthesize Se-scFv. Therefore, we must construct a new scFv-WCD1-lessACA gene, which can express its mRNA not containing any ACA sequences and express its amino acid sequence of target protein (scFv) being same to scFv-WCD1. In this way, the scFv-WCD1-lessACA can be only expressed in SPP system and no other background proteins in the cells could be expressed. The expression results showed that high level of scFv-WCD1-lessACA synthesis was at least sustained for 96 h in the virtual absence of background protein synthesis. Then, selenocysteine (Sec) was incorporated into the scFv-WCD1-lessACA by chemical modification and resulted in Se-scFv-WCD1-lessACA. The enzymatic characteristics of Se-scFv-WCD1-lessACA were determined. GPX activity was 2,563 U/μmol, its binding constant for GSH was 0.687 ×105/mol. Moreover, Se-scFv-WCD1-lessACA was confirmed to have a strong antioxidant ability to protect mitochondria against oxidative damage induced by Vc/Fe2+ (mitochondrial damage model), suggesting that Se-scFv-WCD1-lessACA has potential application for protection of mitochondrial damage induced by reactive oxygen species (ROS).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have