Abstract

Spintronic devices rely on the spin degree of freedom (DOF), and spin orbit coupling (SOC) is the key to manipulate spin DOF. Quasi-one-dimensional structures, possessing marked anisotropy gives more choice for the manipulation of the spin DOF since the concrete SOC form varies along with crystallographic directions. The anisotropy of the Dresselhaus SOC in cadmium selenide (CdSe) nanobelt and nanowire was studied by circular photogalvanic effect. It was demonstrated that the Dresselhaus SOC parameter is zero along the [0001] crystallographic direction, which suppresses the spin relaxation and increases the spin diffusion length, and thus is beneficial to the spin manipulation. To achieve a device structure with Rashba SOC presence and Dresselhaus SOC absence for manipulating the spin DOF, an ionic liquid gate was produced on a nanowire grown along the [0001] crystallographic direction, and the Rashba SOC was induced by gating, as expected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.