Abstract

The exact Hamiltonians for Rashba and cubic Dresselhaus spin-orbit couplings on a curved surface with an arbitrary shape are rigorously derived. Two orthogonal principal curvatures dominate the electronic spin transport, and the asymptotic behavior of the normal confined potential on a curved surface is insignificant. For a curved surface with a large curvature, the higher order momentum terms play an important role in controlling spin transport. The Rashba spin-orbit coupling on a curved surface only induces the extra pseudopotential term, and the cubic Dresselhaus spin-orbit coupling on a curved surface can induce the extra pseudokinetic and pseudomomentum terms. Because of the extra curvature-induced terms and the associated pseudomagnetic fields, spin transport on a curved surface is very different from that on a flat surface. The Hamiltonians on both cylindrical and spherical surfaces are explicitly derived here, and the associated physical properties of electrons are studied in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call