Abstract
Control over generation and dynamics of excited electronic states is fundamental to their utilization in all areas of technology. We present the first example of multichromophoric systems in which emissive triplet states are generated via a pathway involving photoinduced electron transfer (ET), as opposed to local intrachromophoric processes. In model dyads, PtP-Ph(n)-pRhB(+) (1-3, n = 1-3), comprising platinum(II) meso-tetraarylporphyrin (PtP) and Rhodamine B piperazine derivative (pRhB(+)), linked by oligo-p-phenylene bridges (Ph(n)), upon selective excitation of pRhB(+) at a frequency below that of the lowest allowed transition of PtP, room-temperature T(1)→S(0) phosphorescence of PtP was observed. The pathway leading to the emissive PtP triplet state includes excitation of pRhB(+), ET with formation of the singlet radical pair, intersystem crossing within that pair, and subsequent radical recombination. Because of the close proximity of the triplet energy levels of PtP and pRhB(+), reversible triplet-triplet (TT) energy transfer between these states was observed in dyads 1 and 2. As a result, the phosphorescence of PtP was extended in time by the long decay of the pRhB(+) triplet. Observation of ET and TT in the same series of molecules enabled direct comparison of the distance attenuation factors β between these two closely related processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.