Abstract
We investigate the generation of nonreciprocal single photons in the chiral waveguide-cavity-emitter system. Due to the chirality of light-emitter interactions, photons in the left direction couple to a cavity which induces only linear optical effects, while photons in the right direction couple to a cavity-emitter system which can generate optical nonlinearity. In the regime of single-photon transmission, photons in the left direction are absorbed by the cavity at the resonance frequency, while photons in the right direction are transmitted due to the Rabi splitting. In the regime of two-photon transmission, optical linearity in the left direction cannot produce photon-photon interactions and does not change the statistics of photons. However, the effective repulsive interaction between photons can be produced by the optical nonlinearity in the right direction, suppressing two-photon transmission (photon blockade). Physically, the photon-photon bound state, which emerges due to the strong-photon-photon correlation mediated by the cavity-emitter system, plays a key role in generation of photon blockade at the resonance frequency. As a result, nonreciprocal single photons can be realized in the combination of single-photon transmission and photon blockade at the resonance frequency. Additionally, photon-photon interactions are sensitive to the width of the wave packet since photons should coincide at the interaction site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.