Abstract
How can organelles communicate by bidirectional vesicle transport and yet maintain different protein compositions? We show by mathematical modeling that a minimal system, in which the basic variables are cytosolic coats for vesicle budding and membrane-bound soluble N-ethyl-maleimide–sensitive factor attachment protein receptors (SNAREs) for vesicle fusion, is sufficient to generate stable, nonidentical compartments. A requirement for establishing and maintaining distinct compartments is that each coat preferentially packages certain SNAREs during vesicle budding. Vesicles fuse preferentially with the compartment that contains the highest concentration of cognate SNAREs, thus further increasing these SNAREs. The stable steady state is the result of a balance between this autocatalytic SNARE accumulation in a compartment and the distribution of SNAREs between compartments by vesicle budding. The resulting nonhomogeneous SNARE distribution generates coat-specific vesicle fluxes that determine the size of compartments. With nonidentical compartments established in this way, the localization and cellular transport of cargo proteins can be explained simply by their affinity for coats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.