Abstract

Sec1/Munc18 (SM) proteins and soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) form part of the core intracellular membrane fusion machinery, but it is unclear how they cooperate in membrane fusion. The synaptic vesicle SNARE synaptobrevin and the plasma membrane SNAREs syntaxin-1 and SNAP-25 assemble into a tight SNARE complex that includes a four-helix bundle formed by their SNARE motifs and is key for fusion. The neuronal SM protein Munc18-1 binds to syntaxin-1 and to the SNARE complex through interactions with the syntaxin-1 N-terminal region that are critical for neurotransmitter release. It has been proposed that Munc18-1 also binds to synaptobrevin and to the SNARE four-helix bundle and that such interactions might be crucial for membrane fusion, but definitive, direct evidence of these interactions has not been described. Using diverse biophysical approaches, we now demonstrate that Munc18-1 indeed binds to synaptobrevin and to the SNARE four-helix bundle. Both interactions have similar affinities (in the low micromolar range) and appear to involve the same cavity of Munc18-1 that binds to syntaxin-1. Correspondingly, the N-terminal region of syntaxin-1 competes with the SNARE four-helix bundle and synaptobrevin for Munc18-1 binding. Importantly, the Munc18-1 binding site on synaptobrevin is located at the C-terminus of its SNARE motif, suggesting that this interaction places Munc18-1 right at the site where fusion occurs. These results suggest a model in which neurotransmitter release involves a sequence of three different types of Munc18-1-SNARE interactions and in which Munc18-1 plays a direct, active role in membrane fusion in cooperation with the SNAREs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call