Abstract
We generated the muscle aquaporin 4 (AQP4) overexpressing transgenic mice in order to investigate the skeletal muscle pathology at RNA and protein levels. At RNA level, the AQP4 mRNA expression of soleus, EDL and cardiac muscles in Tg mice was statistically significantly higher than that in wild mice by the real-time reverse transcription polymerase chain reaction method. At protein level examinations, we used the immunoblot, immunohistochemistry and freeze-fracture electron microscopy. The immunoblot showed the single band of 31 kDa with anti-AQP4 antibody in the extracts of soleus and EDL muscles of wild mice but not in extract of wild cardiac muscle; while the reaction band was noted in cardiac muscle of Tg mice and the reaction band was stronger in the extracts of soleus and EDL muscles of Tg mice. The immunohistochemistry showed that the expression of AQP4 at the myofiber surface of soleus and EDL muscles of Tg mice was more marked than that of wild mice and, interestingly, the AQP4 expression of these muscles of Tg mice appeared to be more remarkable in type 1 slow twitch myofibers as judged by the positive slow myosin immunostaining of adjacent serial sections. The immunofluorescence staining with anti-AQP4 antibody of cardiac muscles of wild mice revealed the scarcely immunopositive myofibers; whereas the immunostaining cardiac muscles of Tg mice contained the numerous AQP4 immunopositive myofibers. The freeze-fracture electron microscopy demonstrated that the orthogonal array densities in soleus and EDL muscle plasma membranes of Tg mice were significantly higher than those of wild mice and that the orthogonal array like particle density of cardiac muscle plasma membranes of Tg mice appeared to be more numerous than that of cardiac myofibers of wild mice. Finally the clinical phenotype of Tg mice appeared to be similar to that of wild mice. Further physiological examination with devices may suggest some about the physiological difference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.