Abstract

Higher-order solitons are formed by coupling femtosecond pulses into the fundamental mode of a highly nonlinear silica photonic crystal fiber (HNL-SPCF) fabricated in our laboratory. It is experimentally observed that the higher-order solitons break up into a series of stable and broadband discrete fundamental solitons at the mid-infrared wavelength longer than 2000 nm through the process of soliton self-frequency shift due to the perturbations induced by the higher-order dispersive and nonlinear effects. The maximum soliton red-shift and the tunable wavelength range can be up to 1600 nm and over 400 nm, respectively. The nonlinear dynamic processes of femtosecond pulse breakup are consistent with the solution of the generalized nonlinear Schrodinger equation. This multiple stable and broadband mid-infrared wavelengths generated in such an HNL-SPCF can be used as all-fiber multiwavelength ultrashort pulse sources for multiphoton microscopy and ultrafast photonics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.