Abstract

Sample deposition based on micro-droplet ejection (MDE) has broad application prospects in the field of biomedicine. As a potential technology option for cell printing, a hybrid pneumatic-electrohydrodynamic (HPEHD) MDE system is built in the laboratory. Strong electric field is established by applying a high voltage between the nozzle and a collector electrode. The pneumatic actuation is realized via a solenoid valve staying outside of the liquid chamber. The solenoid valve is set in conduction for a short period of time ▵t; gas of high pressure P0 enters the liquid chamber, and produces a pressure pulse, which extrudes the liquid slightly out of the nozzle. The liquid is deformed further in the electric field into a cone shape (Taylor cone), and then the end of the Taylor cone breaks to form a micro-droplet. The ejection process is studied using machine-vision and image processing. With sodium alginate (1.0%) as bioink, single droplet per ejection is realized, and the droplet size is reduced by 50% due to the presence of the electric field. It is found that increasing the voltage has little effect on the size of droplets. In contrast, increasing source pressure P0 or increasing ▵t the conduction time of the solenoid valve can change the volume of droplet in a wider range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.