Abstract

We study the generation of hybrid entanglement in a one-dimensional quantum walk. In particular, we explore the preparation of maximally entangled states between position and spin degrees of freedom. We address it as an optimization problem, where the cost function is the Schmidt norm. We then benchmark the algorithm and compare the generation of entanglement between the Hadamard quantum walk, the random quantum walk and the optimal quantum walk. Finally, we discuss an experimental scheme with a photonic quantum walk in the orbital angular momentum of light. The experimental measurement of entanglement can be achieved with quantum state tomography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.