Abstract

By controlling electron injection into the second period of the laser-driven wakefield in a downward density ramp, a high-quality low-energy electron beam can be accelerated in a short segment of high-density plasma. After a second downward density ramp followed by a low-density plasma plateau, the pre-accelerated electron beam can be seeded into the first period of the laser-driven wakefield for cascaded acceleration at an optimized phase. A monoenergetic electron beam with peak energy of ∼1.2 GeV can be generated from plasma with a length of 12 mm and density of 9 × 1017 cm−3, driven by a laser pulse with peak power of 77 TW. By modifying the acceleration stage comprising several density-ascending plasma segments, the peak energy of the quasi-monoenergetic electron beam can be efficiently increased by about 50% via a quasi-phase-stable multiple-cascade acceleration scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.