Abstract
Current CO2 reduction and utilization technologies suffer from high energy consuming. Thus, an energy favourable route is in urgent demanding. CO2 mineralization is theoretically an energy releasing process for CO2 reduction and utilization, but an approach to recovery this energy has so far remained elusive. For the first time, here we proposed the principle of harvesting electrical energy directly from CO2 mineralization, and realized an energy output strategy for CO2 utilization and reduction via a CO2-mineralization fuel cell (CMFC) system. In this system CO2 and industrial alkaline wastes were used as feedstock, and industrial valuable NaHCO3 was produced concomitantly during the electricity generation. The highest power density of this system reached 5.5 W/m2, higher than many microbial fuel cells. The maximum open circuit voltage reached 0.452 V. Moreover, this system was demonstrated viable to low concentration CO2 (10%) and other carbonation process. Thus, the existing of an energy-generating and environmentally friendly strategy to utilize CO2 as a supplement to the current scenario of CO2 emission control has been demonstrated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have