Abstract

The squeezed light at 1.5 m telecommunication band has been considered as an important resource of continuous variable (CV) practical fiber-based quantum information research because it is the lowest loss in fiber. A bright phase quadrature squeezed light for continuous variable at 1.5 m is demonstrated from a semi-monolithic degenerate optical parametric amplifier (DOPA) based on a periodically poled KTiOPO4 (PPKTP) crystal. The laser source is a continuous wave (CW) single-frequency fiber laser at 1.5 m, which is sent through a ring mode cleaner (MC) as a preliminary spatial and noise filter. And then the main portion of the output from the MC is used for external-enhanced second harmonic generation to obtain a CW single-frequency low noise laser at 780 nm that acts as the pump of the DOPA. The residual light of the output from the MC at 1.5 m is used as the injected signal light of the DOPA and the local oscillator (LO) of a balanced homodyne detector (BHD) system. The DOPA is built by using a type-I PPKTP crystal and a piezo-actuated output coupler and works in double-resonance case with a threshold power of 230 mW. When the DOPA is operating in the state of amplification, the output down-conversion field should be a bright phase quadrature squeezed light, where the relative phase between the pump and the injected signal is locked to 0. A 4.7 dB bright phase quadrature squeezed light is measured by the BHD system with the pump light of 110 mW and the injected signal of 3 mW, where the relative phase between the down-conversion field and the LO is locked to 0. Our measurement is limited by the optical losses and the detection efficiency. We have taken into account the detection efficiency of 86.6%, and the actual squeezing of the squeezed light being 6.3 dB. Moreover, because it is so crucial a process for CV quantum information system that the transmission and evolution of the CV squeezed states in the fiber may reappear in all information of the quantum states in the phase space, then the bright squeezed light is detected by a BHD system in the time domain, and its Wigner quasi-probability distribution function can be reconstructed by using a quantum tomographic technique. Furthermore, the bright squeezed state at 1.5 m is an ideal source for fiber-based long-distance quantum information because of its stability and bright mean field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call