Abstract

A recent neural network model of cortical associative memory incorporating neuronal adaptation by a simplified description of its underlying ionic mechanisms is extended towards more realistic network units and architecture. Excitatory units correspond to groups of adapting pyramidal neurons and inhibitory units to groups of nonadapting interneurons. The network architecture is formed from pairs of one pyramidal and one interneuron unit each with inhibitory connections within and excitatory connections between pairs. The degree of adaptability of the pyramidal units controls the character of the network dynamics. An intermediate adaptability generates limit cycles of transitions between stored patterns and regulates oscillation frequencies in the range of theta rhythms observed in the brain. In particular, neuronal adaptation can impose a direction of transitions between overlapping patterns also in a symmetrically connected network. The model permits a detailed analysis of the transition mechanisms. Temporal sequences of patterns thus formed may constitute parts of associative processes, such as recall of stored sequences or search of pattern subspaces. As a special case, neuronal adaptation can accomplish pattern segmentation by which overlapping patterns are temporally resolved. The type of limit cycles produced by neuronal adaptation may also be of significance for central pattern generators, also for networks involving motor neurons. The applied learning rule of Hebbian type is compared to a modified version also common in neural network modelling. It is also shown that the dependence of the network dynamic behaviour on neuronal adaptability, from fixed point attractors at weak adaptability towards more complex dynamics of limit cycles and chaos at strong adaptability, agrees with that recently observed in a more abstract version of the model. The present description of neuronal adaptation is compared to models based on dynamic firing thresholds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call