Abstract

Dental implant insertion on a site with low bone quality or bone defect should be preceded by a bone graft or artificial bone graft insertion to heal the defect. We generated a beta-tricalcium phosphate (β-TCP) and poloxamer 407-based hydrogel composite and penetration of the β-TCP/hydrogel composite into the peri-implant area of bone was evaluated by porous bone block experiments. The maximum penetration depth for porous bone blocks and dense bone blocks were 524 μm and 464 μm, respectively. We report the in-vivo performance of a composite of β-TCP/hydrogel composite as a carrier of recombinant human bone morphogenetic protein (rhBMP-2), implanted into a rabbit tibial defect model. Three holes drilled into each tibia of eight male rabbits were (1) grafted with dental implant fixtures; (2) filled with β-TCP/hydrogel composite (containing 5 μg of rhBMP-2), followed by grafting of the dental implant fixtures. Four weeks later, bone-implant contact ratio and peri-implant bone formation were analyzed by radiography, micro-CT and histology of undecalcified specimens. The micro-CT results showed a significantly higher level of trabecular thickness and new bone and peri-implant new bone formation in the experimental treatment compared to the control treatment. Histomorphometry revealed a significantly higher bone-implant contact ratio and peri-implant bone formation with the experimental treatment. The use of β-TCP/poloxamer 407 hydrogel composite as a carrier of rhBMP-2 significantly promoted new bone formation around the dental implant fixture and it also improved the quality of the new bone formed in the tibial marrow space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call