Abstract

AbstractEarthquakes are among the most devastating natural disasters in China, causing serious casualties and property losses. To effectively reduce catastrophic risk, it is important to establish an earthquake catastrophe insurance system based on the earthquake catastrophe model, of which seismic hazard analysis is a main module. Probabilistic seismic-hazard analysis uses the potential source model, seismicity model, and ground-motion attenuation model, as well as the probability method to obtain the seismic hazard value of a given point. However, because the influence of a single seismic event is required when the earthquake catastrophe model is used for risk analysis, a series of single events needs to be generated according to the potential source model so as to calculate the influence of each event on the given point. In this study, based on the seismicity model (potential sources and their seismicity parameters) used in compiling the fifth generation of Seismic Ground Motion Parameter Zoning Map of China, we use the Monte Carlo method to simulate seismic events conforming to temporal, spatial, and intensity distribution of China’s seismic activities. In the simulation process, we follow the Poisson distribution in occurrence time and the Gutenberg–Richter law in magnitude distribution, and we use potential sources and earthquake occurrence rates to describe spatial distribution. The simulated seismic events include the following parameters: date (year, month, and day), location (longitude and latitude), depth, magnitude, and attitude of seismogenic faults. The simulated seismic event set can support earthquake risk analysis in the earthquake catastrophe model and has been applied in the earthquake catastrophe model of China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call