Abstract

Background: Blackgram is being cultivated as an indispensable pulse crop and a rich source of vitamins and minerals. Though the requirement for blackgram is high, the productivity is low. The ultimate aim of any plant breeder in a crop improvement program is to increase seed yield/ productivity. With this background, the current study was focused to investigate genetic variability/effects on important yield and its contributing traits of blackgram. Methods: The research material comprised of P1, P2, F1, F2 and F3 obtained from a cross between CO 6 and LBG 17 varieties in blackgram. Observations on nine biometrical traits were recorded from all these five populations for generation mean analysis. By employing Mather and Jinks (1971) scaling test of C and D, the suitability nature of the simple additive-dominance model can be identified. Following Hayman (1958) perfect fit solution, the mean of five generations (P1, P2, F1, F2 and F3) was utilized to calculate five parameters. Result: Fitted genetic model revealed as important yield and yield contributing traits governed by dominance and epistasis in this study, it indicates the selection may be postponed to later generations with greater homozygosity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call