Abstract
This study presents a methodology for generation expansion planning (GEP) under the presence of uncertainty of multiple renewable energy sources (RES). Both long- and short-term uncertainties are represented and incorporated within the proposed GEP model. The long-term RES uncertainty is simulated by the annual variation of the capacity credit. The short-term uncertainty is modelled by means of the net power based on the hourly variation of RES output power and load curve. The proposed GEP model is solved through three steps. In the first step, the proposed robust GEP model is solved considering the long-term uncertainty of the multiple RES. Short-term uncertainty is considered when solving the GEP model in the second step. In the last step, the robustness of the obtained robust GEP model results is verified by checking the reliability criteria. A new correlated polyhedral uncertainty set is introduced considering the correlation between the different RES uncertain coefficients through its correlation matrix. Different GEP results are presented for different uncertainty scenarios. The results demonstrate that considering the correlation among uncertain coefficients provides insight for effects of correlation on investment strategies. Reserve margin is adapted to cope with uncertainty impact. Reliability criteria are verified by DIgSILENT generation adequacy tool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.