Abstract

We analyze a fiber-optic component which could find multiple uses in novel information-processing systems utilizing squeezed states of light. Our approach is based on the phenomenon of photon-number squeezing of soliton noise after the soliton has propagated through a nonlinear optical fiber. Applications of this component in optical networks for quantum computation and quantum cryptography are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.