Abstract

Fano resonances have been achieved in a variety of complex plasmonic nanostructures. Here we propose a novel planar structure supporting higher order Fano resonances, a plasmonic nanodisk with a built-in missing sectorial slice whose slice angle varies from 0 to 360°. The numerical results reveal that higher order Fano resonances can be generated in the visible wavelength range when the slice angle locates in a certain range in this reduced-symmetry structure. Such higher order Fano resonances result from the coupling between the dipolar mode supported by the edge of the built-in missing slice and the multipolar ring modes. Furthermore, the effects of dimension and ring width of this structure on the spectral positions and intensities of the higher order Fano resonances are also studied. The line shapes of Fano resonances can be tuned flexibly by modifying the geometrical parameters of this structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.